Roll No \qquad Total Printed Pages - 6

F-3608

B.Sc. (Part - I) Examination, 2022
(New Course)
MATHEMATICS

Paper First

(Algebra and Trigonometry)

Time : Three Hours]
[Maximum Marks:50
नोटः प्रत्येक प्रश्न से कोई दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit - I

1. (A) दर्शाइये कि किसी आव्यूह के भिन्न-भिन्न आइगेन मानों के संगत आइगेन सदिश एक घाततः स्वतंत्र होते हैं।

Show that the eigen vectors corresponding to distinct eigen values of a matrix are linearly independent.
(B) आव्यूह $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ के आइगेन मानों को ज्ञात कीजिए। आव्यूह A का प्रतिलोम, कैली हैमिल्टन प्रमेय द्वारा ज्ञात कीजिए।तथा $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$ को A में एक रैखिक बहुपद के रूप में व्यमा कीजिए।

Find the eigen values of $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$. By the use of Caley. Hamilton theorem find inverse of A, and Reduce in the form of linear polynomial in A of $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$
(C) निम्न आव्यूह को समानीति एशेलोन रूप में बदलिए तथा जाति एवं शून्यता ज्ञात कीजिए।

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
1 & 3 & 2 & 2 \\
2 & 4 & 3 & 4 \\
3 & 7 & 4 & 6
\end{array}\right]
$$

Convert the following martrix into reduced Echelon form and find Rank and Nullity.
$A=\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 6\end{array}\right]$

Unit - II

2. (A) आव्यूह विधि द्वारा दर्शाइये कि निम्न समीकरण असंगत है। $x+y+z=-3,3 x+y-2 z=-2,2 x+4 y+7 z=7$
Show by matrix method that, the following equations are inconsitent.
$x+y+z=-3,3 x+y-2 z=-2,2 x+4 y+7 z=7$
(B) यदि α, β, γ समीकरण $x^{3}+p x^{2}+q x+r=0$ के मूल है, तो वह समीकरण ज्ञात कीजिए, जिसके मूल $\frac{\alpha}{\beta+\gamma}, \frac{\beta}{\alpha+\gamma}, \frac{\gamma}{\alpha+\beta}$ है।

If α, β, γ are the roots of the equation
$x^{3}+p x^{2}+q x+r=0$, then find the equation whose roots are $\frac{\alpha}{\beta+\gamma}, \frac{\beta}{\alpha+\gamma}, \frac{\gamma}{\alpha+\beta}$
(C) निम्न समीकरण को दकार्ते विधि से हल कीजिए।

$$
x^{4}-8 x^{3}-12 x^{2}+60 x+63=0
$$

Solve the following equation using Descarte's method.
$x^{4}-8 x^{3}-12 x^{2}+60 x+63=0$

Unit - III

3. (A) समूह के लिए लाग्रांज का प्रमेय लिखिए तथा सिद्ध कीजिए। State and prove Langrange's Theorem for group.
(B) सिद्ध कीजिए कि यदि $f: A \rightarrow B$ एकैक आच्छादक है तो $\bar{f}^{1}: B \rightarrow A$ भी एकैक आच्छादक है।

If $f: A \rightarrow B$ is one - one onto mapping then prove that $\bar{f}^{-1}: B \rightarrow A$ is also one - one onto
(C) दर्शाइये कि किसी समूह के दो प्रसामान्य उपसमूहों का सर्वनिष्ठ एक प्रसामान्य उपसमूह होता है।

Show that intersection of two normal subgroups of any group is also a normal subgroup.

इकाई-4/Unit - 4
4. (A) समूहों पर समाकारिता का मूलभूत प्रमेय लिखिए एवं सिद्ध

कीजिए।
State and prove fundamental theorem on homomorphism on groups.
(B) किसी वलय $(R,+, \cdot)$ की दो गुणजावलियों का सर्वनिष्ठ R की एक गुणजावली होता है।

Intersection of two ideals of a ring $(\mathrm{R},+, \cdot)$ is also an ideal.
(C) दर्शाइये कि सम्मिश्र संख्याओं का समुच्चय क्रमित पूर्णांकीय प्रांत नहीं है।

Show that the set of complex numbers is not an ordered integral domain.

इकाई - 5/Unit - 5

5. (A) निम्न श्रेणी का योग ज्ञात कीजिए
$c \sin \alpha-\frac{C^{2}}{2} \sin 2 \alpha+\frac{C^{3}}{3} 3 \alpha---\infty$
Find the sum of the followng series
$c \sin \alpha-\frac{C^{2}}{2} \sin 2 \alpha+\frac{C^{3}}{3} 3 \alpha---\infty$
(B) यदि $\log \log \log (\alpha+i \beta)=p+i q$, तो सिद्ध कीजिए

कि (i) $e^{e^{p} \cdot \cos q} \cdot \cos \left(e^{p} \sin q\right)=\frac{1}{2} \log \left(\alpha^{2}+\beta^{2}\right)$
(ii) $e^{e^{p} \cdot \cos q} \cdot \sin \left(e^{p} \sin q\right)=\tan ^{-1 \beta} / \alpha$

If $\log \log \log (\alpha+i \beta)=p+i q$, then prove that
(i) $e^{e^{p} \cdot \cos q} \cdot \cos \left(e^{p} \sin q\right)=\frac{1}{2} \log \left(\alpha^{2}+\beta^{2}\right)$
(ii) $e^{e^{p} \cdot \cos q} \cdot \sin \left(e^{p} \sin q\right)=\tan ^{-1 \beta} / \alpha$
(C) यदि $\sin (\theta+i \phi)=\tan \alpha+i \sec \alpha$, सिद्ध कीजिए कि $\cos 2 \theta \cdot \cosh 2 \phi=3$.

If $\sin (\theta+i \phi)=\tan \alpha+i \sec \alpha$, then prove that $\cos 2 \theta \cdot \cosh 2 \phi=3$.

