Roll No. Total Printed Pages - 6

F - 3608

B.Sc. (Part - I) Examination, 2022

(New Course)

MATHEMATICS

Paper First (Algebra and Trigonometry)

Time : Three Hours]

[Maximum Marks:50

- नोटः प्रत्येक प्रश्न से कोई दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।
- Note: Attempt any two parts from each question. All questions carry equal marks.

Unit - I

 (A) दर्शाइये कि किसी आव्यूह के भिन्न-भिन्न आइगेन मानों के संगत आइगेन सदिश एक घाततः स्वतंत्र होते हैं।

Show that the eigen vectors corresponding to distinct eigen values of a matrix are linearly independent.

P.T.O.

(B) आव्यूह $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ के आइगेन मानों को ज्ञात कीजिए। आव्यूह A का प्रतिलोम, कैली हैमिल्टन प्रमेय द्वारा ज्ञात कीजिए। तथा $A^{5} - 4A^{4} - 7A^{3} + 11A^{2} - A - 10I$ को A में एक रैखिक बहुपद के रूप में व्यमा कीजिए।

Find the eigen values of $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. By the use of Caley. Hamilton theorem find inverse of A, and Reduce in the form of linear polynomial in A of $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$

(C) निम्न आव्यूह को समानीति एशेलोन रूप में बदलिए तथा जाति एवं शून्यता ज्ञात कीजिए।

A =	1	2	1	2	
	1	3	2	2	
	2	4	3	4	
	3	7	4	6	

Convert the following martrix into reduced Echelon form and find Rank and Nullity.

F - 3608

 $A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 6 \end{bmatrix}$

2. (A) आव्यूह विधि द्वारा दर्शाइये कि निम्न समीकरण असंगत है। x + y + z = -3, 3x + y - 2z = -2, 2x + 4y + 7z = 7Show by matrix method that, the following equations are inconsitent.

$$\begin{aligned} x+y+z &= -3, \ 3x+y-2z = -2, \ 2x+4y+7z = 7 \\ \text{(B)} \quad \text{dG} \quad \alpha, \beta, \gamma \quad \text{समीकरण} \quad x^3+px^2+qx+r = 0 \text{ and} \\ \text{H}_{\text{C}} \quad \text{eta} \quad \text{the standard of the standard of$$

If α , β , γ are the roots of the equation $x^{3} + px^{2} + qx + r = 0$, then find the equation whose

roots are
$$\frac{\alpha}{\beta+\gamma}, \frac{\beta}{\alpha+\gamma}, \frac{\gamma}{\alpha+\beta}$$

P.T.O.

(C) निम्न समीकरण को दकार्ते विधि से हल कीजिए। $x^4 - 8x^3 - 12x^2 + 60x + 63 = 0$

Solve the following equation using Descarte's method.

$$x^4 - 8x^3 - 12x^2 + 60x + 63 = 0$$

Unit - III

3. (A) समूह के लिए लाग्रांज का प्रमेय लिखिए तथा सिद्ध कीजिए। State and prove Langrange's Theorem for group.

(B) सिद्ध कीजिए कि यदि $f: A \to B$ एकैक आच्छादक है तो $f^{-1}: B \to A$ भी एकैक आच्छादक है।

If $f: A \to B$ is one - one onto mapping then prove that $\overline{f}^{1}: B \to A$ is also one - one onto

(C) दर्शाइये कि किसी समूह के दो प्रसामान्य उपसमूहों का सर्वनिष्ठ एक प्रसामान्य उपसमूह होता है।

Show that intersection of two normal subgroups of any group is also a normal subgroup.

इकाई - 4/Unit - 4

4. (A) समूहों पर समाकारिता का मूलभूत प्रमेय लिखिए एवं सिद्ध

F - 3608

F - 3608

कीजिए।

State and prove fundamental theorem on homomorphism on groups.

(B) किसी वलय (R, +,·) की दो गुणजावलियों का सर्वनिष्ठ R की एक गुणजावली होता है।

Intersection of two ideals of a ring $(R, +, \cdot)$ is also an ideal.

(C) दर्शाइये कि सम्मिश्र संख्याओं का समुच्चय क्रमित पूर्णांकीय प्रांत नहीं है।

Show that the set of complex numbers is not an ordered integral domain.

इकाई - 5/Unit - 5

5. (A) निम्न श्रेणी का योग ज्ञात कीजिए

$$c\sin\alpha - \frac{C^2}{2}\sin 2\alpha + \frac{C^3}{3}3\alpha - - -\infty$$

Find the sum of the followng series

$$c\sin\alpha - \frac{C^2}{2}\sin 2\alpha + \frac{C^3}{3}3\alpha - \dots - \infty$$

(B) $\forall a a \log \log \log (\alpha + i\beta) = p + iq, d a d a d b d b d b$ $\exists b (i) e^{e^{p} \cdot \cos q} \cdot \cos (e^{p} \sin q) = \frac{1}{2} \log (\alpha^{2} + \beta^{2})$ (ii) $e^{e^{p} \cdot \cos q} \cdot \sin (e^{p} \sin q) = \tan^{\frac{1}{p}} / \alpha$

If $\log \log \log (\alpha + i\beta) = p + iq$, then prove that

(i)
$$e^{e^{p} \cdot \cos q} \cdot \cos(e^{p} \sin q) = \frac{1}{2} \log(\alpha^{2} + \beta^{2})$$

(ii)
$$e^{e^{p} \cdot \cos q} \cdot \sin\left(e^{p} \sin q\right) = \tan^{1} \beta_{\alpha}$$

(C) यदि $\sin(\theta + i\phi) = \tan \alpha + i \sec \alpha$, सिद्ध कीजिए कि $\cos 2\theta \cdot \cosh 2\phi = 3$.

If $\sin(\theta + i\phi) = \tan \alpha + i \sec \alpha$, then prove that $\cos 2\theta \cdot \cosh 2\phi = 3$.

F - 3608

P.T.O.

F - 3608